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ABSTRACT: A unique dataset obtained from the Coyote small uncrewed aircraft system (sUAS) in the inner-core boundary
layer of Hurricane Maria (2017) is assimilated using NOAA’s Hurricane Ensemble Data Assimilation System (HEDAS) for
data assimilation and Hurricane Weather Research and Forecasting (HWRF) system for model advances. The case of study is
1800 UTC 23 September 2017 when Maria was a category-3 hurricane. In addition to the Coyote observations, measurements
collected by the NOAA Lockheed WP-3D Orion and U.S. Air Force C-130 aircraft were also included. To support the assimi-
lation of this unique dataset, a new online quality control (QC) technique in HEDAS scales the observation–background dif-
ference by the total uncertainty during data assimilation and uses the interquartile range outlier method to identify outlier
observations. Experimental setup includes various very frequent cycling scenarios for a control that does not assimilate Coyote
observations, assimilation of Coyote observations in addition to the control observations, and the application of online QC.
Findings suggest progressively improved analyses with more-frequent cycling, Coyote assimilation, and application of online
QC. This applies to verification statistics computed at the locations of both Coyote and non-Coyote observations. In terms of
the storm structure, only experiments that assimilated the Coyote observations were able to reproduce the double-eyewall
structure that was observed at the time of the analysis, which is more consistent with the intensity of the storm according to the
observations that were collected. Limitations of the study and future plans are also discussed.

SIGNIFICANCE STATEMENT: Findings from this study illustrate the significant impact difficult-to-obtain, near-
surface observations can have on improving the accuracy of tropical cyclone structure and intensity. Adding these novel
measurements in a way that also includes advanced cycling and quality control techniques in data assimilation has the poten-
tial to improve public forecasts that are reliant upon detailed depictions of storm strength and boundary layer structure prior
to landfall. The results speak to the importance of parallel and consistent advancements in modeling, data assimilation, and
observational capabilities to improve the depiction of the tropical cyclone inner-core structure in numerical models.

KEYWORDS: Boundary layer; Hurricanes/typhoons; Aircraft observations; Data quality control; In situ atmospheric
observations; Filtering techniques; Kalman filters; Numerical analysis/modeling; Quality assurance/control;
Data assimilation

1. Introduction

Hurricanes are complex atmospheric phenomena that have
proven to be challenging to predict. While substantial pro-
gress has been made in the prediction of their track over the
last two decades, improvements in hurricane intensity fore-
casting have been slower (e.g., National Hurricane Center
2017). One complexity that renders intensification of hurricanes
difficult to forecast is the multiscale nature of the processes
involved, from the synoptic in the hurricane steering environ-
ment down to turbulent and microphysical scales in the inner
core (e.g., Rogers et al. 2013). In the present study, the focus is
on observing capabilities in the hurricane inner core to improve
the representation of the vortex structure in analyses.

The hurricane inner core is a notoriously difficult region to
observe, both remotely and in situ. Interpretation of remote
satellite brightness temperature measurements is challenging
due to the complexity of the microphysical processes involved
under the typically convective atmospheric conditions (Zhang

et al. 2016), while in situ sampling by reconnaissance aircraft
is rare and hazardous, especially at low altitudes within the
planetary boundary layer (PBL) due to the existence of large
ocean waves, convective downdrafts, and sea spray (Cione
et al. 2016). Uncrewed aircraft systems (UAS) therefore offer
the unique capability to provide observations in these under-
sampled regions and thereby improve hurricane forecasts through
utilization of such observations in data assimilation (DA).

Although UAS observations in the hurricane PBL are criti-
cally important, the small-scale nature of the turbulent pro-
cesses they potentially sample brings about complexities in
DA and modeling applications. Indeed, the rapid increase in
computational resources worldwide in recent years has
brought about an equally fast-paced advance in operational
modeling capabilities (Bauer et al. 2015; Yano et al. 2018)
down to horizontal resolutions in the range of 1–10 km. This
is known as the “gray zone,” where clouds and convective
transport are partly resolved and it becomes unclear whether
parameterization of deep convection is necessary (Tomassini
et al. 2017). Several DA techniques have been proposed to
address the challenges of such highly nonlinear regimes within
the context of ensemble-based (Houtekamer and ZhangCorresponding author: Altug Aksoy, aaksoy@rsmas.miami.edu
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2016), variational (Bannister 2017), as well as particle-filter
(Van Leeuwen et al. 2019) applications.

While great emphasis is being given to developing or
improving data assimilation methods to deal with the increas-
ingly nonlinear nature of observation–background differences
(also called innovations), the equally important question of
how to treat observational errors in these regimes seems to
draw not as much attention. Understandably, the diversity
and complexity of modern observing platforms prompts
developers of DA techniques to increasingly rely on data pro-
viders to ensure the quality of their data. There may also be
an assumption that existing online quality control (QC) meth-
ods will continue to be suitable if incoming data are already
of good quality. Online QC here is defined as a QC procedure
that is applied in addition to the traditional QC step, which
occurs during the preprocessing of observations, and takes
advantage of the knowledge of model background informa-
tion during assimilation, hence the term “online.”

Indeed, online QC methods have been proposed and imple-
mented since the early applications of DA methods. For
instance, as early as 1991, QC is given great emphasis, and it
is acknowledged that “the accuracy of the forecast is usually
good enough to be very useful in detecting uncharacteristi-
cally larger errors in the observations” (National Research
Council 1991). More than a decade later, Auligné and
McNally (2007) suggest that, in an adaptive bias correction
scheme, the population of observations that pass QC ulti-
mately determines how bias is calculated, thus potentially
leading to a feedback between bias correction and QC. They
argue that the use of the mode, rather than the mean, of first-
guess innovations should be influenced less by nonhomogene-
ous populations (such as a mixture of clear-sky and cloudy
radiances in their case) and thus better suited to reduce feed-
back. They then propose a “pseudo-mode,” where observa-
tions are assigned smaller weights in the calculation of bias as
their first-guess departures increase. A similar approach is
adopted in Sakov and Sandery (2017), but this time applying
a scalable magnification factor to the observation error itself
to reduce its impact with increasing innovation magnitude.
However, increasing model resolution toward the “gray zone”
mentioned above introduces further complications as models
begin to resolve atmospheric phenomena at multiple spatial
and temporal scales in the convective to synoptic range. In
such circumstances, QC becomes much more challenging
because observations that may appear representative of the
mesoscale or convective scale could have a higher likelihood
of getting filtered out as outliers at the synoptic scale.

The current article approaches observational QC in the
context of tropical cyclone (TC) inner-core DA. A case is
chosen with a unique combination of observations, including
not only those that are typically available from reconnais-
sance aircraft (Rogers et al. 2013) and atmospheric motion
vector (AMV) wind retrievals (Velden et al. 2005) but also
data collected by the Coyote, a small UAS (sUAS) platform
(Cione et al. 2016, 2020) that samples the lower altitudes of
the PBL. This combination of observations offers a unique
dataset, sampling distinct regions in and around the TC inner
core at varying temporal and spatial resolutions. It will be

demonstrated that a revisit to QC in a holistic manner that is
consistent with how DA is performed may result in improved
analyses.

The DA system employed is the Hurricane Ensemble Data
Assimilation System (HEDAS), the performance of which
was successfully evaluated in various applications spanning
assimilation of reconnaissance aircraft observations (Aksoy et al.
2013; Aberson et al. 2015), Global Hawk (Braun et al. 2013)
uncrewed aircraft system (UAS) observations (Christophersen
et al. 2018a), and satellite observations (Christophersen et al.
2018b). It uses a square root ensemble Kalman filter (Whitaker
andHamill 2002) and is coupled with the numerical model compo-
nent of NOAA’s Hurricane Weather Research and Forecasting
(HWRF) system (Bernardet et al. 2015).

The article is structured as follows. Section 2 describes the
online QC methodology and section 3 provides the details of
the experimental setup. Results are presented separately in
observation space (section 4) and model space (section 5).
Finally, a summary and further discussion is provided in section 6.

2. The online QC methodology

a. General description

A twofold approach to online observation QC is proposed.
The first step involves elimination of observations that are
deemed “erroneous” during the preprocessing stage. At this
phase, no model background information is available and QC
mostly relies on the expertise of data providers to distinguish
“good” observations from “bad” observations. In many cases,
data are provided along with quality classifications that can be
utilized to decide which observations should pass QC during
preprocessing. In some situations, observations are accompa-
nied by observation error estimates that can be utilized to
reduce the impact of observations with larger errors during
DA. Once observations pass preprocessing, they become
available for DA, at which time the model background infor-
mation is also accessible. It is therefore possible to perform a
direct comparison between the background and observations
by interpolation from model space to observation space, thus
making online QC feasible.

b. Schematic

The proposed online QC can be explained in five distinct
steps (Fig. 1):

1) The observation y0 is assumed to have passed QC during
preprocessing and to be ready for assimilation. Its error
(uncertainty) is prescribed by a Gaussian probability dis-
tribution with standard deviation s0.

2) During DA, the model background is also available, inter-
polated from model space to observation space at the
observation’s location. It is denoted yb with a known error
of sb also assumed to be the standard deviation of a
Gaussian probability distribution.

3) The observation–background difference, Dy = y0 2 yb, is
also known as the innovation and it represents new infor-
mation introduced by the observation.
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4) As the observation and background errors are assumed to
be Gaussian, the innovation also has a Gaussian probabil-
ity distribution with the total uncertainty of (s02 1 sb2)1/2.

5) The total uncertainty can be used as a scaling factor to
normalize the innovation to y′. In this manner, it is possi-
ble to pool all observations into a single population for
the purposes of online QC.

c. Technical details of online QC

The availability of scaled innovations y′ is an important
advantage as it allows all observations to be considered in a
single population for QC purposes. This is also necessary for
practical purposes because observation numbers can vary sig-
nificantly across observing platforms, especially for TC inner-
core applications. For platforms that provide only a small
number of observations, it may not be possible to perform
robust QC analysis. The ability to combine all observations
through normalization therefore makes it possible to include
observations in the QC process regardless of the platform
that provides them and their data volume compared to other
platforms.

The purpose of the proposed online QC methodology is to
detect outlier innovations in order to exclude their associated
observations from assimilation and avoid strongly nonlinear
DA updates. The one issue, however, is that even though the
total uncertainty is assumed to follow a normal distribution,
in practice this is often violated, especially at meso- and
smaller scales. In particular, in the TC inner core, meso-, con-
vective, and turbulent scales are strongly coupled and
expected to generate non-Gaussian background distributions
due to strong nonlinearities at these scales (Poterjoy and
Zhang 2011). Therefore, the outlier detection needs to be suf-
ficiently robust under such circumstances.

Various statistical methods are proposed for outlier detec-
tion, generally classified as either univariate versus multivari-
ate or parametric versus nonparametric techniques (Ben-Gal
2010). The scaling of innovations to y′ by the total uncertainty
allows all observations to be considered at once in a univari-
ate application. Among univariate parametric outlier detec-
tion methods, the interquartile range (IQR) is chosen due to

its robustness in the face of the possibility of non-Gaussian
probability distributions of y′. The IQR is defined as the dif-
ference between the 75th and 25th percentiles of a dataset:

IQR � Q3 – Q1, (1)

where Qn represents the nth quartile. In other words, Q1 is
the median of the lower half of a dataset, while Q3 is the
median of the upper half of a dataset. Outliers are then
defined as samples that are outside the range

Q1 2 1:5 3 IQR; Q3 1 1:5 3 IQR( ): (2)

In descriptive statistics, the limits in Eq. (2) constitute the
“whiskers” (also known as the “fences”) of box-and-whisker
diagrams (Tukey 1977). Being based on the population quar-
tiles, they are, by definition, nonparametric, i.e., they repre-
sent properties of statistical populations without making any
assumptions of the underlying statistical distributions. This
makes the IQR-based outlier detection method attractive for
data assimilation applications when it is not safe to assume
Gaussianity in innovation populations.

3. Experimental setup

a. TC case of interest

The case of interest is Hurricane Maria as observed on
1800 UTC 23 September 2017. At this time, the TC was a
category-3 hurricane, centered at 25.98N latitude and 72.38W
longitude with a minimum sea level pressure (MSLP) of 952 hPa
and intensity (maximum 10-m wind speed) of 100 kt (∼51.4 m s21).
For further details, refer to Pasch et al. (2018, 3–4).

b. Data assimilation system

In this study, the experimental data assimilation system
HEDAS (Aksoy et al. 2012, 2013), developed at NOAA’s
Atlantic Oceanographic and Meteorological Laboratory (AOML)
Hurricane Research Division (HRD), is utilized. HEDAS is
based on an exact parallel implementation of the square root
ensemble Kalman filter (EnKF) introduced by Whitaker and
Hamill (2002). It is specifically designed to assimilate high-
resolution TC inner-core observations. A unique aspect of

y⁰

σ⁰
Observation
Uncertainty

Background
Uncertainty

1. Observation 2. Background

3. Innovation y�
Δy

σ�

4. Total Uncertainty = [σ⁰²+σ�²]�

5. Scaled Innovation = y’ = Δy / [σ⁰²+σ�²]�

FIG. 1. Schematic of the main components of the online QC technique. (Note that the graphic is
generated for visual convenience and only represents the case of large innovations.)
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HEDAS is its storm-relative observation processing capability
(Aksoy 2013) that accounts for storm motion during assimila-
tion cycles, allowing observations to be randomly distributed
into arbitrarily short assimilation windows. For the present
study, this capability allows DA experiments to be designed with
assimilation windows as short as 5 min.

c. Numerical model

The numerical model is the model component of HWRF,
which is NOAA’s operational TC forecasting system. The pub-
licly available version 4.0a of this model is used (Bernardet et al.
2015), which is based on the operational HWRF as of late 2018.
The model configuration is very similar to what is used in opera-
tions, except for the lack of ocean coupling, an outer domain
and a vortex-following inner domain with 9- and 3-km horizon-
tal grid spacings, and 61 vertical levels. Additional details of the
configurations are contained in Table 1 of Christophersen et al.
(2017). It should be noted that, in this case, only the numerical
model portion of HWRF is used here for spinup and cycle-to-
cycle model advances. Observation preprocessing and data
assimilation components are carried out under HEDAS.

d. Observational data

At the time window of interest (1800 UTC 23 September
2017 6 3 h), the inner core of Hurricane Maria was sampled
by the NOAA Lockheed WP-3D Orion (P-3) and U.S. Air
Force C-130 (C-130) aircraft. The types of observations assim-
ilated from the P-3 include Tail Doppler Radar (TDR) radial

wind superobservations (superobs) as detailed in Aksoy et al.
(2012), GPS dropsonde (Hock and Franklin 1999) data, air-
craft flight-level wind and temperature observations, and
Stepped Frequency Microwave Radiometer (SFMR) wind
speed retrievals at 10-m altitude (Uhlhorn et al. 2007). Except
for the TDR, the same instruments are also available on the
C-130. Further details can be found in Table 3 of Aksoy et al.
(2013). Additional, non-aircraft data include AMVs (Velden
et al. 2005).

In addition to the routinely available observations described
above, two Coyote sUAS missions were conducted by NOAA:
flights 3 and 4 that were both eyewall missions, as described
in Table 1 of Cione et al. (2020). These two consecutive flights
together provided an almost complete azimuthal coverage
of the eyewall, mostly below an altitude of 1.5 km. The observa-
tions collected by the Coyote include temperature, relative
humidity, and atmospheric pressure. Instantaneous wind speed
and direction are computed by vector subtraction of the true air
velocity from the ground velocity. The details of the sensors and
data processing can be found in Cione et al. (2016). Although
the data acquisition rate for the Coyote is generally 1 Hz,
no thinning or superobbing is applied to Coyote data in this
study. This is mainly to maximize the Coyote data’s impact
on the HEDAS analyses, as it is the only platform that pro-
vides observations in the eyewall at these very low alti-
tudes. Investigation of the impact of thinning will be the
focus of future studies.

The spatial distribution of the observations used in this
study is shown in Figs. 2 and 3. In terms of kinematic
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FIG. 2. Spatial coverage of kinematic observations within 400 km of the storm center: (a) horizontal coverage and
(b) radial–height coverage. The platforms from which observations were obtained are indicated by the marker colors.
All observations are storm centered, accounting for their horizontal position relative to the storm position interpolated
at the time of measurement. (Note that some thinning is applied judiciously to enhance the visibility of observations
from various platforms. For a comparison of the actual number of observations, refer to Table 1.)
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observations (Fig. 2), not only do the TDR superobs comprise
the largest number of observations of all platforms assimi-
lated, but they also provide the best spatial coverage in the
inner core, especially at higher altitudes. In contrast, all other
aircraft observing platforms (including the Coyote) provide
observations only at and below the flight level (∼3 km). Nev-
ertheless, compared to the other platforms, sUAS observa-
tions sample a mostly data-void region near the surface within
50 km of the storm center. Compared to the kinematic observa-
tions, the spatial coverage of the thermodynamic observations
(Fig. 3) is constrained to below the aircraft flight level of ∼3 km.
The total number of thermodynamic observations is also much

smaller, as there exists no thermodynamic platform that comple-
ments the spatial coverage of the TDR.

The total number of observations that are available for
assimilation is summarized in Table 1 (column heading
“All”). Mostly due to the large number of TDR superobs,
kinematic observations by far outweigh thermodynamic obser-
vations. But, when TDR superobs are not considered, observa-
tions from the Coyote comprise the majority of kinematic
observations, especially near the TC inner core where AMVs
are not a significant contribution (Fig. 2). This discrepancy
is even more pronounced for thermodynamic observations:
compared to the flight-level and dropsonde platforms, the
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FIG. 3. As in Fig. 2, but for the spatial coverage of thermodynamic observations within 150 km of the storm center.
Except for the dispersed coverage from three dropsonde soundings, no thermodynamic observations are available out-
side the shown radius of 150 km.

TABLE 1. Observing platforms and the number of observations that were assimilated and filtered out by online QC for each platform.

No. of observations

Observing platform Alla Online QCd Percent online QCd (%)

Kinematic observations
TDR radial wind speed superobs 48 161 798 1.63
Coyote zonal and meridional wind speed 6016 736 10.90
AMV zonal and meridional wind speed 2159 0 0.00
Flight-level zonal and meridional wind speed 764 20 2.55
Dropsonde zonal and meridional wind speed 312 20 6.02
SFMR wind speed 258 6 2.33

Thermodynamic observations
Coyote temperature 3008 69 2.29
Coyote specific humidity 3002 74 2.47
Flight-level temperature 345 12 3.48
Flight-level specific humidity 334 58 17.37
Dropsonde temperature 119 15 12.61
Dropsonde specific humidity 109 26 23.85

a
“All” indicates observations assimilated without the application of online QC.
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measurements from the Coyote are greater in number by nearly
one order of magnitude.

e. Experimental setup

HEDAS is a “cold-start” ensemble system that uses a
global ensemble as its initial condition and only performs
high-resolution cycling of TC inner-core observations within
a 6-h period. Almost all experiments in the present study
share a common initial ensemble that is obtained by the 4-h
spinup from the first 30 ensemble members of NOAA’s
Global Forecast System (GFS) analysis ensemble valid at
1200 UTC (one additional experiment employs a 5-h spinup).
The various experiments only differ in the types of observa-
tions assimilated, number of assimilation cycles performed,
and whether online QC is applied. The storm-relative obser-
vation processing capability mentioned before (Aksoy 2013)
allows all available 6-h observations to be distributed into any
desired number of assimilation windows. But in each case, the
final high-resolution cycle occurs at 1800 UTC 23 September
2017. The default HEDAS cycling setup is demonstrated in
Fig. 4.

The experiments follow a three-tiered approach (Table 2).
First, a “Control” experiment is designed where the standard
set of observations are assimilated without the Coyote. In
this scenario, observations are equally distributed into
nine assimilation cycles 15 min apart between 1600 and
1800 UTC. In Tier A, the default HEDAS configuration is
only modified for cycling strategy. In two experiments,
cycles are shortened to 10 and 5 min, resulting in 13 and
25 assimilation cycles, respectively. In a fourth experi-
ment, ensemble spinup is carried out for 5 h followed by
thirteen 5-min assimilation cycles. In Tier B, these four
cycling strategies are repeated by also assimilating the

Coyote observations. In Tier C, online QC is also applied.
In this manner, a total of 12 experiments are carried out to
explore the combined impacts of cycling strategy, Coyote
observations, and online QC.

4. Results in observation space

In the present study, the focus is on the incremental impact of
assimilating Coyote observations and applying online QC on the
final, high-resolution, vortex-scale analyses in various cycling-strat-
egy scenarios. Here, the investigation is conducted in observation
space by comparing analyses directly to observations.

a. Definitions of observation-space diagnostics

Observation-space diagnostics are carried out following the
general innovation-based methodology laid out in Aksoy et al.
(2009). Recall that, for a given observation i, the innovation
is defined as the observation-minus-forecast difference,
Dybi � y0i 2 ybi . The mean innovation Dyb is then the average
of all innovations for a given observation type:

Dyb � 1
M

∑M
i�1

Dybi , (3)

where the summation is taken over all M observations of a par-
ticular type. Assuming that observations themselves are not
biased, the presence of significant mean innovation could indi-
cate biases in both the model and data assimilation system.

The second diagnostic of interest is the root-mean-square
(rms) innovation, computed using the deviations of the inno-
vations from the mean:

rb �
��������������������������
1
M

∑M
i�1

Dybi 2 Dyb
( )2√

: (4)

-6 h -3 h -2 h 0 h +3 h

4-h Spin-up from
GFS Ensemble 2-h Cycling

6-h Storm-Relative
Obs. Processing

9 Assimilations
15-min Apart

FIG. 4. Schematic of the default HEDAS spinup and cycling configuration. The final storm-scale analysis is valid at 0 h,
when all observations available within the 6-h window have been assimilated.

TABLE 2. Summary of the experiments carried out.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Tier A: Control 9 3 15-min cyclesa 13 3 10-min cycles 25 3 5-min cycles 13 3 5-min cycles
Tier B: Coyote Tier A 1 Coyote Tier A 1 Coyote Tier A 1 Coyote Tier A 1 Coyote
Tier C: online QC Tier B 1 online QC Tier B 1 online QC Tier B 1 online QC Tier B 1 online QC
a Default HEDAS configuration.
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The reason for removing the mean innovation is to ensure
that the rms innovation is the best approximation for the ran-
dom error of the innovations.

The third and final diagnostic measures the adequacy of
ensemble spread by comparing it to the “optimal” ensemble
spread. The domain-averaged standard deviation of ensem-
ble-member innovations, denoted as ensemble spread, is cal-
culated as follows:

sb �
�������������������������������������������
1
M

∑M
i�1

1
N 2 1

∑N
j�1

Diybj 2 Diyb
( )2[ ]√√

, (5)

where N represents ensemble size, and thus the inner summa-
tion is to obtain ensemble variance at the location of the ith
observation. This leads to the definition of the spread ratio R
that measures how adequate the actual ensemble spread sb is
compared to the “optimal” ensemble spread (one that ade-
quately represents the statistics of forecast error):

R � sb������������
rb2 2 s2

0

√ , (6)

where s2
0 is the average observation error variance of a partic-

ular observation type.
It should be noted briefly that the overarching motivation

behind exploring these observation-space diagnostics in a
cycling data assimilation system is to expose and reduce the
model and data-assimilation biases while also maintaining a
healthy random variability among the ensemble members that
results in a near-optimal spread ratio. Indeed, the goal is not to
seek near-zero rms innovations as is the case for mean innova-
tions, as doing so would inevitably lead to the assimilation system
giving more weight to the model background than the observa-
tions and result in filter divergence (e.g., Aksoy et al. 2012).

b. Observation-space diagnostics for Coyote observations

First, observation-space diagnostics for the Coyote observa-
tions are presented. This serves as an independent assessment

for the control experiments because the Coyote observations
are not assimilated. As explained in Table 2, diagnostics will
be evaluated in three tiers. For each tier, the impact of the
four different cycling strategies will be compared.

1) TIER A: CONTROL EXPERIMENTS

Figures 5–7 summarize the time evolution of the three inno-
vation-based diagnostics for the Coyote horizontal wind
(zonal and meridional combined), temperature, and specific
humidity, respectively. For all of the wind diagnostics (Fig. 5),
little difference can be discerned among the various cycling
strategies for RMS innovation, which is reduced from the ini-
tial ∼20 to ∼8 m s21 within a few cycles but remains at that
level thereon. Mean innovation, on the other hand, is reduced
significantly from ∼20 m s21 to slightly below zero but again
does not vary much among the cycling experiments. But, nev-
ertheless, the assimilation of a significant number of nearby
TDR superobs likely helps in reducing the wind bias at these
locations. Finally, spread ratio quickly drops to near 0.3 in all
four runs, which indicates substantial underdispersion of
ensemble spread. Even without the assimilation of Coyote
observations at these locations, it is hypothesized that the
large number of TDR superobs assimilated contributes to this
outcome. Further optimization through thinning and/or
superobbing may help reduce such underdispersion, but this
is beyond the scope of the current study, as such an effort
would require a larger sample of cases with varying density
and spatial coverage of observations.

For the Coyote temperature (Fig. 6) and specific humidity
(Fig. 7) observations, the results are different than their wind
counterpart. Specifically, cycling strategy has a discernable
impact on mean innovation, where more-frequent cycling
appears to reduce the negative bias by ∼0.3 K for temperature
and ∼0.4 g kg21 for specific humidity on average. Since the
processes that control temperature and moisture occur at
smaller spatial and temporal scales due to stronger influence
from convection, higher-frequency cycling that limits error
growth in-between cycles (e.g., He et al. 2020) is believed to
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FIG. 5. Coyote horizontal wind observation-space diagnostics for the control (Tier A) experiments, as a function of time:
(a) RMS (solid) and mean (dashed) innovations, and (b) spread ratio. Colors indicate various cycling strategies (Exp. 1–4).
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have a more positive impact on these fields. As for spread
ratio, although there appears to be greater variability among
the four experiments compared to the wind observations,
there nevertheless does not appear to be a clear systematic
difference among them in an average sense. This is because,
regardless of cycling strategy, the same total number of obser-
vations are assimilated by the end of cycling, which results in
similar cumulative behavior in ensemble spread evolution
among these cycling strategies.

The statistics discussed above can be further compacted
into average statistics calculated for the entirety of respective
cycling periods. This is also a more practical approach with a
large number of experiments and the many types of observed
variables. Based on this cycle-averaging approach, experi-
ment-to-experiment improvements are calculated for RMS
error, absolute bias, total error (RMS error plus absolute
bias), and spread ratio. For the first three diagnostics,
improvement is indicated by tendency toward zero, while for
spread ratio, improvement is indicated by tendency toward
one.

These statistics are shown in Fig. 8, where the incremental
improvements in various cycling strategies over the Control

cycling setup are shown in rows 1–3. As was discussed in the
context of Fig. 5, for Coyote wind observations, only small
improvements in error (0–1 m s21) are obtained by varying
the cycling strategy, although in Exp. 3, bias and total error
are nevertheless improved by ∼40% and ∼15%, respectively.
In contrast, cycle-averaged improvements at the locations of
Coyote thermodynamic observations are much more pro-
nounced. In both Exps. 3 and 4, greater reduction in bias and
total error is observed both magnitude-wise and in a relative
sense. In fact, except for row 4 (improvements from assimilat-
ing Coyote observations, to be discussed later), these experi-
ments result in the largest improvements in bias and total
error magnitude for both of the thermodynamic observation
types.

2) TIER B: COYOTE ASSIMILATION EXPERIMENTS

The second tier of experiments assimilates the Coyote
observations in addition to the Control observations and
repeats the four cycling strategies investigated in the previous
section. The incremental impact of assimilating the Coyote
observations on the Control cycling setup is shown in row 4 of
Fig. 8. For all three types of Coyote observations, assimilating
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FIG. 7. As in Fig. 5, but for Coyote specific humidity observation-space diagnostics.
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FIG. 6. As in Fig. 5, but for Coyote temperature observation-space diagnostics.
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them results in the reduction in error. For wind, the impact of
the Coyote observations is mostly on rms innovations, as bias
was already reduced to near zero in the Control setup. For
the thermodynamic observations, the reduction in error, espe-
cially in bias, is comparatively (percent-wise) much greater
compared to wind. This is likely because there are very few

other thermodynamic observations near the Coyote observa-
tion locations (Fig. 3). Therefore, assimilating Coyote thermo-
dynamic observations allows them to influence the analysis to
a much greater degree.

Experimentation with more-frequent cycling (rows 5–7 of
Fig. 8) results in further improvements in error statistics. For
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Coyote wind observations, the greatest improvement is nearly
by 27% (∼3 m s21) in total error in Exp. 3 (25 3 5-min
cycles). This suggests that further optimization (in this case
through higher-frequency cycling) is needed to further coun-
terbalance the indirect influence of the large number of
nearby TDR superobs. Comparatively, improvements in tem-
perature and moisture are smaller (indicated by the lighter
shades of red and smaller percentages). It follows that just
assimilating the Coyote observations (Fig. 8, row 4) domi-
nates the relative improvements for the thermodynamic
observations and the additional increases in cycling frequency
therefore only bring about modest further improvements.
This is an important finding that emphasizes the importance
of directly observing the thermodynamic characteristics of the
PBL. In the absence of such observations, it appears that
other means, such as more-frequent cycling, are necessary to
improve the thermodynamic representation of the PBL. But,
when direct observations are available, such reliance on indi-
rect “engineering” solutions is not as critical.

Finally, in terms of the spread ratio, the percent-wise
changes are generally small. The spread ratio for all three
types of Coyote observations is already below optimal, and
the further changes brought about by the assimilation of the
Coyote observations are in the range of only 5%–10%.

3) TIER C: ONLINE QC EXPERIMENTS

The focus is now turned to applying the online QC tech-
nique during assimilation. These results are summarized in
the rows 8–11 of Fig. 8. The incremental impact of online QC
in the Control cycling setup (row 8) is positive for all Coyote
variables. This is not surprising because online QC filters out
some of the higher innovations from assimilation, which has

the direct impact of reducing the innovations Dybi in the mean
and rms innovation calculations, following Eqs. (3) and (4),
thus leading to improvements in these metrics. The reduced
rms innovation rb also reduces the denominator of the spread
ratio [Eq. (6)], effectively resulting in the overall increase in
spread ratios in column 4. Experimentation with cycling strat-
egy (rows 9–11) further improves all of the statistics.

The greatest relative (percent) impact is seen for Exp. 3,
although in absolute terms the improvements for wind are
much greater than temperature and moisture (indicated by
the darker red cells in row 10, Figs. 8a–c, especially for total
error). As discussed before, Coyote wind observations
“compete” with a large number of TDR superobs in their
vicinity. It is therefore conceivable that further optimization
through cycling strategy helps improve their impact on DA.
As for the Coyote thermodynamic observations, since they
are almost the only source of information in the inner-core
PBL, the greatest impact actually occurs simply from assimi-
lating them (row 4, Figs. 8b,c), and further improvements
through alteration of the cycling strategy and online QC are
relatively smaller (rows 8–11, Figs. 8b,c).

Histograms of innovations are also explored to investigate
how online QC interprets outliers and how it evolves through
cycling. In Fig. 9, histograms of Coyote wind innovations are
shown for the first and last cycles in default cycling (Exp. 1).
In the first cycle, no observations are filtered out by online
QC because of the bimodal probability distribution of wind
innovations for which the online QC methodology is not able
to identify outliers. This outcome is actually desirable because
large updates to the background are needed at this time to
account for the severity of both position and intensity errors.
By the last assimilation cycle, almost all of these systematic
errors are corrected in the background vortex, thus resulting
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in a probability distribution that is more akin to Gaussian,
albeit with long tails and some skewness. This allows the
online QC to be much more effective in capturing the tail
ends of the innovation distribution as outliers and filtering
them out.

It is also worthwhile to note some of the differences
between Coyote assimilation experiments with and without
online QC. Comparing the two probability distributions, i.e.,
the green and red bars together with online QC versus the
black bars without online QC, flatter tails and a sharper peak
in the background probability distribution are obtained when
online QC is applied, suggesting that there is a cumulative
positive effect of online QC through the assimilation cycles.

Looking further at Coyote temperature (Fig. 10) and
specific humidity (Fig. 11) distributions, the important

difference from the Coyote wind distributions is that,
while the peak of the distributions is shifted toward zero,
even at the final assimilation cycle, their width remains
generally similar. This confirms the previous finding that
the improvements in the thermodynamic observations
are mostly in bias, while rms innovation remains high.
But of note also is that, with online QC, the histograms have
more pronounced peaks around the median. This is a desired
outcome because, in EnKF applications, background inno-
vation PDFs are assumed to be of Gaussian nature. It
appears that the application of online QC significantly
improves the quality of the analyses in this regard, as evi-
denced by the difference in the last-cycle background dis-
tributions with online QC (green histograms) versus
without (black-contoured histograms).
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c. Observation-space diagnostics for non-Coyote observations

The discussion is now broadened to non-Coyote observations.
As these observations are assimilated regardless of whether Coy-
ote observations are also assimilated, their locations serve as an
independent measure of the impact of Coyote observations. Fig-
ure 12 summarizes the improvements in total error and spread
ratio calculated at the locations of non-Coyote observation types.
The focus is now solely on the Exp. 3 cycling strategy (253 5-min
cycles), as it was previously found to result in the greatest improve-
ments in Coyote observations. Incremental improvements are cal-
culated in three tiers as before: Exp. 1 (default) to Exp. 3 cycling
strategy with no Coyote observations, the incremental impact of
Coyote observations in Exp. 3, the further incremental impact of
online QC in Exp. 3 with Coyote observations, and finally the com-
bined overall impact of Exp. 3 cycling strategy, Coyote observa-
tions, and online QC on Control with the default cycling strategy.

1) TIER A: CONTROL EXPERIMENT WITH

HIGH-FREQUENCY CYCLING

As shown in Table 1, there are five types of non-Coyote
wind observations: TDR superobs, SFMR wind speed, flight-

level and dropsonde wind, and AMVs. Due to their similar
vertical and horizontal coverage (Figs. 2 and 3), hereon,
flight-level and dropsonde observations are included in one
group as “Other” observations. The improvements in total
error at the locations of these wind observations are shown in
columns 1–4 of Fig. 12a. The more-frequent cycling strategy
of Exp. 3 introduces large improvements for TDR superobs
and Other-wind observations, while practically resulting in
none for AMV and SFMR platforms. For AMVs, this is likely
due to their distance to the inner core both radially and verti-
cally (Fig. 2), where smaller departures from observed wind
combined with the slower evolution of the dynamics at outer
radii do not necessitate very frequent cycling. For SFMR
observations, it is believed that the preexisting tuning in their
observation error leads to variability as a function of rain rate
(Aksoy et al. 2013) and thus their assimilation does not appear
to necessitate further optimization through cycling strategy.

Shifting focus to the non-Coyote thermodynamic observa-
tions, there are only two types in the dataset: flight-level and
dropsonde (Table 1). Employing the same reasoning as
before, these observations are grouped together as “Other”
and the improvements in total error are shown in columns
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5–6 of Fig. 12a. For both temperature and specific humidity,
the more-frequent cycling strategy of Exp. 3 results in small
improvements in total error magnitude. Furthermore, unlike
the Coyote thermodynamic observations for which improve-
ments were mostly in bias (Figs. 8b,c, row 2), the improve-
ments for the non-Coyote observations are mostly in rms
innovation (not shown). One contributing factor is that, at
this point between Exp. 1 and Exp. 3, Coyote observations
are still not assimilated but non-Coyote observations always
are. Therefore, the assimilation of the non-Coyote thermody-
namic observations in Exp. 1 has likely already improved
bias. This is admittedly a hypothesis that could be tested
through further experimentation, but is beyond the scope of
the current study.

In terms of spread ratio (Fig. 12b), generally small overall
impact is observed for all observation types both in absolute
and relative terms. This is similar to what was observed for
the Coyote observations themselves (Figs. 5–7), as the aver-
age spread ratio is mostly controlled by the total number of
observations assimilated, which varies very little by cycling
strategy.

2) TIER B: HIGH-FREQUENCY CYCLING WITH COYOTE

OBSERVATIONS

When Coyote observations are also assimilated employing
the cycling strategy of Exp. 3 (Fig. 12, row 2), except for
SFMR, only small impacts can be seen on the total error in
wind observations. For the SFMR observations, the relatively
large degradation by ∼0.4 m s21 (∼11%) suggests that the cor-
rections to the low-level wind field introduced by the Coyote
observations compete with those from the SFMR observa-
tions in a way that is slightly detrimental from the perspective
of how well the analysis fits the SFMR observations. This may
partially be due to the fact that SFMR wind speed observa-
tions are remotely retrieved by an instrument that is mounted
on board the P-3 aircraft, tuned for 10 m above the sea sur-
face, while the Coyote wind observations are direct in situ
measurements of the wind at the location of the Coyote
sUAS that is typically much higher (∼100–600 m). There are
also representativeness discrepancies because the Coyote
measurements occur at a rate of 1–10 Hz, thus capturing tur-
bulent scales in addition to the mesoscale, while the SFMR
foot print of ∼2 km does not capture any turbulent scales of
air motion.

As for spread ratio, the results are comparable to those
observed in Tier A (Fig. 12b) and consistent with their Coyote
counterparts shown in Fig. 8 (rows 4 and 6). The reasoning is
similar to that discussed in Tier A: although the number of
observations assimilated increases as Coyote observations are
also assimilated, the increase in the total number of observa-
tions is small in a relative sense because the total number of
observations is still dominated by the TDR superobs by one
order of magnitude (Table 1).

3) TIER C: COYOTE OBSERVATIONS WITH ONLINE QC

When online QC is turned on as the final step, substantial
additional improvements are obtained for most observation

types and in terms of both total error and spread ratio
(Fig. 12, row 3). The largest improvements are for both wind
and thermodynamic platforms at the locations of Other obser-
vation locations, where improvements are by ∼0.8 m s21

(∼18%), ∼0.5 K (∼36%), and ∼1 g kg21 (∼58%) for wind,
temperature, and specific humidity, respectively. These are
accompanied by parallel improvements in the spread ratio (by
0.15–0.3). As explained before, these results are not entirely
surprising because online QC, by design, eliminates the obser-
vations with highest magnitudes of innovations, which leads
to a reduction in both total error [through Eqs. (3) and (4)]
and spread ratio [both by reducing the total number of obser-
vations assimilated and through Eq. (6)].

A closer inspection of where observations filtered out by
online QC are located relative to the storm center (Fig. 13)
reveals that there is a higher concentration of observations
that are eliminated as their distance to the storm center
decreases, more so for wind than thermodynamic observa-
tions. (Note that the apparent large number of Coyote wind
observations filtered out is a plotting artifact that arises from
their large spatial density. In actuality, only ∼11% of Coyote
wind observations are not assimilated, as is shown in Table 1.)
Recalling that all observations are processed in a storm-rela-
tive framework (Aksoy 2013), it is hypothesized that position
errors due to such processing become greater as distance to
the storm center decreases. Also, because of their directional
component, errors of wind observations are likely to be more
sensitive to position uncertainty than their thermodynamic
counterparts. A further noteworthy observation is that at
the radii of 200–250 km (Figs. 13a,b), there is a significant pro-
portion of the flight-level thermodynamic observations that
are filtered out while their wind counterparts passed the
online QC.

d. Full impact of Coyote observations in
observation space

While it is useful to investigate the impact of frequent
cycling and online QC individually and incrementally to
understand and improve their effectiveness as optimization
tools in data assimilation, it is nevertheless useful to under-
stand the full impact of the Coyote observations with all avail-
able optimization options turned on. Figure 14 summarizes
these results for observation types, where the improvements
shown are now against Control where no Coyote observations
are assimilated and no optimization is applied.

For wind observations (Fig. 14a), not surprisingly, the great-
est improvements occur at the locations of the Coyote
observations themselves: A combination of rms error improve-
ments by ∼5 m s21 and bias improvements by ∼1.5 m s21

results in total error improvements over ∼6.5 m s21. The
spread ratio is also improved by ∼0.15. At the locations of the
other wind observation types, the impact from assimilating
Coyote observations is only indirect. Nevertheless, positive
impact is evident for TDR superobs and Other wind observa-
tions. For TDR superobs, the improvement by ∼1 m s21 is
mostly in rms error. Considering that the assimilation of TDR
superobs has already been mostly optimized in past studies
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(e.g., Aksoy et al. 2013), a further improvement of this magni-
tude is considered an important advancement. Meanwhile, for
the Other wind observations, a total improvement of similar
magnitude is more evenly distributed between rms error
and bias. These improvements are accompanied by parallel
improvements in the spread ratio by ∼0.1. Finally, for the

AMV and SFMR wind speed observation types, the impact of
the Coyote observations is negligible in terms of total error.
There is also a slight degradation in spread ratio.

For thermodynamic observations (Fig. 14b), more pro-
nounced improvements are obtained. As was the case for the
Coyote wind observations, the improvement for Coyote

(c) Wind Obs. (0-60 km) (d) Thermodynamic Obs. (0-60 km)
Dist. from Storm Ctr. (km)

Coyote Flight Level Dropsonde
SFMR Tail Doppler Radar AMV

Colors:
Assimilated Obs.
QC’d Obs.

Dimming:
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(a) Wind Obs. (0-250 km) (b) Thermodynamic Obs. (0-250 km)
Dist. from Storm Ctr. (km)
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FIG. 13. Locations of observations filtered out by online QC within (a),(b) 250 and (c),(d) 60 km of the storm
center: (left) wind observations and (right) thermodynamic observations. The platforms from which observations were
obtained are indicated by the marker colors. Observations that were filtered out by online QC are shown in bright
(nondimmed) colors. All observations are storm centered, accounting for their horizontal position relative to the
storm position interpolated at the time of measurement. (Note that some thinning is applied judiciously to enhance
the visibility of observations from various platforms. For a comparison of the actual number of observations, refer
to Table 1.)
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temperature (by ∼0.8 K, 52%, for total error) and specific
humidity (by ∼1.4 g kg21, 58%, for total error) is primarily
driven by the fact the Coyote observations were not assimi-
lated in the Control experiment. But unlike the Coyote wind
observations, the improvements are mostly in bias rather than
rms innovation. As was discussed before, a large part of this is
simply due to the lack of a dense set of thermodynamic obser-
vations that was already assimilated in the Control experi-
ment. Therefore, Coyote observations provide a major source
of thermodynamic information in the inner-core PBL, leading
to large reductions in bias through their assimilation. How-
ever, the positive impact is not limited to just the Coyote
observations. On the contrary, the reduction in total error at
the location of Other thermodynamic observations is by
nearly the same magnitude or greater both in absolute and
relative terms. But unlike the Coyote observations, error
reduction is predominantly in terms of rms innovations, likely
because bias was already reduced by their assimilation in
the Control experiment. Finally, significant improvement in
the spread ratio is also obtained for all thermodynamic

observations by 0.15–0.3. As was discussed before, this is
mainly through the application of online QC.

5. Results in model space

In this final section, the focus turns to the comparison of
storm structure in model space. As in the previous section,
the focus is on comparing the final analyses obtained in the
four experiments, the Control experiment with default cycling
strategy (9 3 15-min cycles, Exp. 1) and three further experi-
ments that are based on the Exp. 3 cycling strategy (25 3 5-min
cycles): no Coyote observations, with Coyote observations, and
with Coyote observations and online QC.

a. Summary statistics

Table 3 provides a summary of the observed and analyzed
statistics for intensity, MSLP, and storm position. In the anal-
yses obtained in the four experiments mentioned, the inten-
sity is reduced from the highest estimate of 44.7 m s21 in the
Control to 38.0 m s21 in the final experiment with 25 3 5-min

+28.3% +84.2% +51.6% +16.9%

+50.4% +20.8% +43.8% +44.0%

+45.1% +65.4% +57.6% +39.0%

+66.0% +55.5% +64.2% +78.0%
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(a) Wind Observations
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FIG. 14. Average combined impact of frequent cycling (Exp. 3, 25 3 5-min cycles), Coyote
observations, and online QC compared to the Control for observation-space diagnostics cal-
culated over all assimilation cycles at the locations of all observation platforms, where
“Other” refers to the combined flight-level and dropsonde platforms: (a) wind observations
and (b) thermodynamic observations. Positive numbers indicate improvement relative to
the Control, while negative numbers indicate degradation. The magnitude-wise change for
a given statistic is indicated by the color scale and the corresponding percent change is
printed in the respective cell.
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cycles, Coyote observations, and online QC. In similar
fashion, MSLP increases from 944.8 hPa in the Control to
949.2 hPa in the final experiment. Finally, position error is
reduced from 8.4 km in the Control to 5.9 km in the final
experiment. In all these situations, the overestimation of
the vortex strength in the Control appears to be reduced
with higher-frequency cycling, Coyote observations, and
introduction of online QC.

As for the observed intensity and MSLP, according to the
official NHC storm report (Pasch et al. 2018), NHC’s estimate
as of the analysis time of 1800 UTC 23 September 2017 was
51.4 m s21 and 952 hPa, respectively. However, as noted in
Table 3, these estimates differ from the maximum instrument-
observed 10-m wind speed, which was 40.5 m s21 that was
obtained by the SFMR, while the minimum surface pressure
measured by a dropsondes was 950 hPa. These differences
and their consequences are discussed further in the summary
and discussion section.

b. Kinematic and thermodynamic structure

Further investigation of actual model fields reveals impor-
tant modifications introduced by higher-frequency cycling,
Coyote observations, and online QC. Figure 15 shows how
the 10-m wind speed field is modified from the Control config-
uration. The magnitude of the strongest wind speed is gradu-
ally reduced as its location is pushed outward from a radius of
∼30 km in the Control (Fig. 15a) to ∼50 km in the final experi-
ment (Fig. 15d).

The three-dimensional wind structure is further investi-
gated in an azimuthally averaged sense by plotting the tan-
gential (Fig. 16), radial (Fig. 17), and vertical (Fig. 18)
components of the wind. Also known as the primary circulation,
the tangential wind speed undergoes noteworthy changes as
experiments progress. To focus on the boundary layer where
the biggest differences are present among the experiments, only
the boundary layer structure within 0–2-km height is shown.
Without the Coyote observations (Figs. 16a,b), the strongest

winds are confined inside 50 km and maximized at a radius of
∼37 km. The addition of the Coyote observations (Fig. 16c)
results in both the strengthening of the primary circulation
and the expansion of the strongest wind speed to a radius of
∼70 km. Online QC results in further significant modification
by weakening the circulation by ∼2–3 m s21.

The radial wind speed (i.e., the horizontal component of
the secondary circulation) reflects changes in structure that
are consistent with the primary circulation (Fig. 17). The
boundary layer height is depicted by the 10% maximum radial
inflow contour as in Zhang et al. (2011, see their Fig. 5). The
strongest part of the inflow (negative wind speed) expands
from a radius of ∼30–40 km without the Coyote observations
to ∼70 km with them. Meanwhile, although a low-level out-
flow jet exists in the Control experiments (Figs. 17a,b), its
radial location is at ∼75 km, which is not consistent with the
location of the outflow jet that is typically observed near the
radius of maximum wind (Zhang et al. 2011). With Coyote
observations (Fig. 17c), this structure becomes more self-
consistent as the outflow jet is pushed inward to ∼60 km.
Application of online QC (Fig. 17d) further eliminates the
stronger part of the outflow jet inside 50 km. Overall, a much
more consistent radial inflow structure is obtained as Coyote
observations are assimilated and then online QC is applied.

There are also significant changes in the vertical part of the
secondary circulation (i.e., azimuthally averaged vertical wind
speed, Fig. 18). Since the vertical wind speed spans a greater
range in height, variations across most of the troposphere are
shown between 0 and 14 km. Again, in the Control experi-
ments (Figs. 18a,b), the radial location of the strongest
upward motion is inside 50 km. Assimilating the Coyote
observations (Figs. 18c,d) modifies this structure and results
in a more-enhanced updraft region outside 50 km and weak-
ens the inner updraft region significantly.

Finally, the thermal structure is evaluated through the
azimuthally averaged temperature perturbation relative to
the storm environment at 500-km radius (Fig. 19). First, there
appears to be a weakening of the warm core by ∼0.58–18C
from the Control (Figs. 19a,b) to Coyote (Figs. 19c,d) experi-
ments, which is consistent with the overall weakening of the
wind field discussed before. There is also a slight warming
near the radius of ∼100 km near the height of 8 km. Within
the PBL and especially near the ocean surface (inserts in each
panel), the strongest part of the precipitation-induced cooling
moves inward from outside of the radius of 100 km in the
Control experiments (Figs. 19a,b) to a radius of 50–100 km
in the Coyote experiments (Figs. 19c,d). This shift is more con-
sistent with the location of the stronger updraft region at similar
radii that is observed in the same experiments (Figs. 18c,d).

c. Comparison to observed storm structure

Since almost all available TC inner-core in situ observations
are assimilated in HEDAS, it is generally challenging to
compare HEDAS storm-scale analyses to independent obser-
vations. The one exception is the TDR reflectivity that is
not assimilated due to known biases that exist in the meas-
urements. Figure 20 provides a comparison of the analyzed

TABLE 3. Summary of observed and analyzed intensity and MSLP,
as well as position error for the four experiments shown.

Intensity
(m s21)

MSLP
(hPa)

Position
error (km)

Observations (NHC report)a 51.4 952 }

Observations (SFMR)b 40.5 } }

Observations (dropsondes)c } 950 }

Experiments
Control (9 3 15 min) 44.7 944.8 8.4
1 25 3 5-min cycles (Expt 3) 41.6 947.9 6.2
1 Coyote observations 43.1 948.4 5.9
1 online QC 38.0 949.2 5.9

a Pasch et al. (2018), p. 12.
bMaximum observed SFMR-retrieved 10-m wind speed within
assimilation window, based on dataset obtained from www.aoml.
noaa.gov/hrd/Storm_pages/maria2017/20170923H1.html.
c Minimum near-surface pressure within assimilation window, as
observed by a dropsonde that was released by the NOAA P-3
aircraft at 1917 UTC.
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and composite observed TDR reflectivity and horizontal
wind speed at 2-km height. In a qualitative sense, the corre-
sponding analyzed and observed fields correspond well to
each other. An inner reflectivity maximum at ∼25-km
radius appears both in analyzed and observed fields (Figs.
20a,b). However, although a localized wind speed maximum
is discernable at the same location in the corresponding
observed wind speed field (Fig. 20d), no corresponding maxi-
mum exists its analyzed counterpart (Fig. 20c).

Meanwhile, the high-wind speed region at ∼50–60-km
radius and the associated wavenumber-1 asymmetry corre-
spond to each other very well in the analysis and observations
(Figs. 20c,d), although the highest wind speed in the northeast

quadrant is slightly overestimated in the analysis compared to
the TDR observations. Finally, the primary rainband is more
pronounced in the analysis north of the center and extends
further out radially in the southeast quadrant compared to
the observations. Despite some differences, it is generally con-
cluded that there is a very good agreement between the
observed and analyzed structures of reflectivity and horizontal
wind speed near the inner core.

6. Summary and discussion

A unique dataset obtained from the Coyote small uncrewed
aircraft system (sUAS) in the inner-core planetary boundary
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FIG. 15. Storm-relative plan view of 10-m wind speed (m s21) from the final analyses in the following experiments:
(a) Control; (b) Control with frequent cycling (Exp. 3, 25 3 5-min cycles); (c) Control with frequent cycling (Exp. 3,
253 5-min cycles) and Coyote observations; and (d) Control with frequent cycling (Exp. 3, 253 5-min cycles), Coyote
observations, and online QC. Black contours indicate the area of stronger wind speeds. Corresponding maximum wind
speed, minimum sea level pressure, and position error are printed in white boxes. Estimates of intensity andMSLP based
on NHC best track data as well as observed maximum SFMRwind speed are shown in the gray box in the center.

A K S OY E T A L . 813APRIL 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/02/22 03:45 PM UTC



layer (PBL) of Hurricane Maria (2017) is assimilated using
NOAA’s Hurricane Ensemble Data Assimilation System
(HEDAS) and the forecast model part of NOAA’s Hurricane
Weather Research and Forecasting (HWRF) system. The data
assimilated in HEDAS for this case comprise observations col-
lected by the NOAA Lockheed WP-3D Orion (P-3) and U.S.
Air Force C-130 (C-130) aircraft. Additionally, atmospheric
motion vector (AMV) wind observations were assimilated.
The unique aspect about this case is that two Coyote sUAS
platforms were flown in the eyewall PBL that collected and
relayed back to the P-3 in situ observations of horizontal wind,
temperature, relative humidity, and atmospheric pressure.

A new online quality control (QC) technique is developed
in HEDAS to support the assimilation of this unique dataset
described above. This is in addition to the traditional QC
step that occurs during the preprocessing of observations
and takes advantage of the knowledge of model background
information during assimilation, hence the term “online.”

Assimilation experiments are carried out for four cycling sce-
narios, ranging from the default of 15-min cycling intervals to
5 min. Further experiments are conducted at each cycling sce-
nario with a Control that does not assimilate Coyote observa-
tions, assimilation of Coyote observations in addition to the
Control observations, and the application of online QC.

In the following, a point-by-point summary of the findings
of the study is provided:

• At the locations of the Coyote observations, higher-fre-
quency cycling slightly improves the wind bias and almost
completely eliminates the temperature and specific humid-
ity bias in the Control experiments. Since thermodynamic
observations are likely impacted more by smaller-scale pro-
cesses such as convection, higher-frequency cycling is
believed to lead to larger improvements in bias by resulting
in more-linear updates and smaller innovations as a
consequence.
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FIG. 16. As in Fig. 15, but for the radial–height view of tangential wind speed (m s21) at heights 0–2 km. Corresponding
maximum wind speed is printed in boxes.
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• When Coyote observations are assimilated, errors for both
the wind and thermodynamic observations are significantly
reduced at the locations of the Coyote observations. The
addition of higher-frequency cycling introduces further
improvements, but mostly for the Coyote wind observations.

• The final step of additional online QC introduces large
improvements in ensemble spread and modest improve-
ments in total error for all Coyote observations. This is
both a direct result of filtering out observations with largest
departures from the model background but also an indirect
result of more-linear filter updates achieved through the
elimination of such departures. One confirmation of this
hypothesis is obtained from the fact that fewer observa-
tions, especially Coyote wind observations, are filtered out
by online QC in the experiments with more-frequent
cycling as a result of more-linear updates with smaller
innovations.

• The impact of higher-frequency cycling, Coyote assimila-
tion, and online QC at the locations of non-Coyote

observations is also mostly positive. Although Coyote
assimilation itself only results in small changes in the total
error, both higher-frequency cycling and online QC result
in large improvements both for wind (mostly observed at
TDR, flight-level, and dropsonde locations) and thermody-
namic (observed at all locations) observations. Large
spread-ratio improvements are also obtained for thermody-
namic observations.

• The combined total impact of Coyote assimilation, high-
frequency cycling, and online QC is generally positive for
all observation types. At the locations of Coyote observa-
tions, total wind, temperature, and specific humidity errors
are reduced by ∼6 m s21 (57%), 0.8 K (52%), and 1.4 g kg21

(58%), respectively. At the locations of TDR, flight-level,
and dropsonde wind observations, wind error is improved
by ∼1 m s21 (24%). At the locations of non-Coyote tem-
perature and specific humidity observations, total error is
reduced by 0.7 K (44%) and 1.2 g kg21 (64%), respectively.
All of these reductions in error are also accompanied by
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FIG. 17. As in Fig. 16, but for radial wind speed (m s21). Inflow is depicted in negative contours and outflow is depicted
in positive contours. The dashed black lines indicate the height where the radial wind speed is 10% of the peak inflow.
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parallel improvements in spread ratio in a generally propor-
tional sense.

• Finally, a comparison of the final analyses in model space
reveals important modifications to the storm structure by
frequent cycling, Coyote observations, and online QC. The
most important impact is in the ability of the Coyote obser-
vations to introduce the more-prominent wider eyewall fea-
ture that is otherwise not reproduced well in any of the
Control experiments, even with high-frequency cycling.
Further application of online QC maintains the wide eye-
wall structure but reduces storm intensity to better match
observations. These modifications appear to be present and
consistent in all aspects of storm structure, including near-
surface, tangential, radial, and vertical wind speed as well
as temperature perturbation.

As a general summary, it is concluded that, for effective
DA, it is crucial not only to observe in more detail the inner-
core PBL of TCs but also to modify data assimilation method-
ology to make better use of those observations. In the

particular case presented in this study, data from the two Coy-
ote sUAS flights were able to modify the resulting analyzed
storm structure significantly. However, further application of
frequent cycling and online QC was needed to better match
the observed storm intensity and MSLP.

It is also noteworthy that both frequent cycling and online
QC in essence work to reduce the nonlinearities in the appli-
cation of DA. The former achieves this by reducing the depar-
tures in the background fields from observations through
shorter model advances in-between DA cycles while the latter
helps by eliminating large observation-background departures
through the comparison of normalized innovations among all
observations. Regardless of methodology, it is important to
acknowledge the limitations of ensemble Kalman filter (EnKF)
DA techniques in highly nonlinear applications such as in the TC
inner core. Although the results presented here indirectly speak
to the need of further research in nonlinear DA applications, it is
equally critical to acknowledge the importance of high-frequency
observations that can support further linearization efforts in tra-
ditional EnKFmethods.
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FIG. 18. As in Fig. 16, but for vertical wind speed (m s21) at heights 0–14 km.
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A further issue is related to how best to verify intensity and
MSLP. Traditionally, this is done by comparing the highest
10-m wind speed and minimum sea level pressure found in
the analysis output to what is reported in NHC’s best track
dataset. In the present case, however, there are significant dif-
ferences between metrics calculated from analysis fields and
those reported in the best track. Specifically, observed MSLP
as reported by the best track is 952 hPa while those in the
analyses vary between 945 and 949 hPa. Even more strikingly,
although the observed best track intensity is 51.4 m s21, ana-
lyzed intensity appears significantly underestimated and
remains in the range of 38.0–44.7 m s21. However, when
directly compared to the actual lowest pressure and highest
10-m wind speed measured by any instrument within the 6-h
analysis window, the analyzed intensity and MSLP appear
much closer to observed. The lowest MSLP observed by the
dropsondes near the storm center is 950 hPa and the highest
wind speed observed by the SFMR is 40.5 m s21. It is

important to note that data assimilation is an objective proce-
dure that can only reflect the additional information content
of the observations that it assimilates. Meanwhile, the NHC
best track is a human-generated dataset where subjective con-
siderations beyond just the available observations frequently
impact the final estimates of intensity and MSLP. Therefore,
caution must be exercised when verifying analysis intensity
and MSLP by investigating all available sources of informa-
tion to decide their representativeness in a given case.

It should also be noted here that the main strength of the
Coyote (or any other sUAS) platform is the ability to guide it
into a region of interest and sample it at high frequency with
standard in situ sensors. Similar sampling capability would
not be possible with dropsonde observations as they cannot
be steered once released from aircraft, nor with crewed-air-
craft-mounted sensors because it is prohibitively dangerous to
fly in these regions. This strength is expected to become even
more amplified in the near future as technology advances
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FIG. 19. As in Fig. 16, but for temperature perturbation (8C) at heights 0–14 km. Inserts in each panel show a close-up
view in the PBL between heights 0–2 km and radii 0–150 km.
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allow sUAS to remain airborne for longer time periods
(upward of 4 h compared to the Coyote’s nominal 1-h battery
life), guide themselves according to specified meteorological
criteria using advanced artificial intelligence technology, and/
or be guided in real time from the crewed aircraft using more
advanced technology that allows two-way communication at
longer distances.

Finally, it is important to acknowledge some of the limita-
tions of the present study to place the results in better context.
First, the results are based on a single case, which obviously
limits their interpretation in a general sense. Nevertheless,
despite the significant number of variations in experimental
setup, the variability among the results was mostly con-
strained to where and how observations were assimilated.
The authors believe that this is an indication of stability in
their findings and expect that their conclusions must apply to
similar scenarios equally well. It is also important to note that
only focusing on DA results is expected to minimize the

impact of model error that otherwise should introduce a
much greater variability among experiments if forecasts were
also included in the investigation. To generalize the validity of
the results presented here, the authors plan to expand their
study to all of the cases that include Coyote (and planned
future sUAS) observations, which will be reported in the near
future in a separate study. A parallel study is also underway
to investigate how assimilation of the Coyote observations
impacts NOAA’s operational forecasts.
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